PARABLE

Parabola is the set of points in the plane with attribute that distance of each point from a constant point (focus) is the same as distance from the point of a permanent line (directrix).

$F\left(\frac{p}{2}, 0\right)-$ this is the focus point of the parabola
Line $\quad x=-\frac{p}{2}$ is the directrix of the parabola, $\quad\left(x+\frac{p}{2}=0\right)$
Distance from point $F\left(\frac{p}{2}, 0\right)$ to directrix we will marked with \boldsymbol{p} (the parameter of the parabola).

The equation is: $\quad y^{2}=2 p x$

Of course, this parabola is the most studied, but here is some other parabolas:

$y^{2}=-2 p x$

$x^{2}=2 p y$

$x^{2}=-2 p y$

Example 1.

We have parabola $y^{2}=-4 x$. Through its point $M(-2,-1)$ set a chord that is the point halved

Solution:

Draw a picture to analyze the problem:

Point M in mid-long AB and must be :

$$
\begin{aligned}
& \frac{x_{1}+x_{2}}{2}=-2 \rightarrow x_{1}+x_{2}=-4 \\
& \frac{y_{1}+y_{2}}{2}=-1 \rightarrow y_{1}+y_{2}=-2
\end{aligned}
$$

Points A and B belong to the parabola, and their coordinates can be changed instead x and y in equation:
$A\left(x_{1}, y_{1}\right) \in y^{2}=-4 x \rightarrow y_{1}^{2}=-4 x_{1}$
$B\left(x_{2}, y_{2}\right) \in y^{2}=-4 x \rightarrow y_{2}{ }^{2}=-4 x_{2}$
In this way we get 4 equations with 4 unknowns. We ask for the coordinates of points A and B , but smarter is to find the direction of line which passes through AB .

$$
\begin{aligned}
& k=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& y_{1}^{2}=-4 x_{1} \\
& \frac{y_{2}^{2}=-4 x_{2}}{y_{2}^{2}-y_{1}^{2}=-4 x_{2}-\left(-4 x_{1}\right)} \begin{array}{l}
\left(y_{2}-y_{1}\right)\left(y_{2}+y_{1}\right)=-4 x_{2}+4 x_{1} \quad \text { we use that } y_{2}+y_{1}=-2 \\
\left(y_{2}-y_{1}\right)(-2)=-4\left(x_{2}-x_{1}\right) \\
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=2
\end{array}
\end{aligned}
$$

Now the equation of line through a point $M(-2,-1)$
$y-y_{0}=k\left(x-x_{0}\right)$
$y-(-1)=2(x-(-2))$
$y+1=2 x+4$
$y=2 x+3$

Line and parabola

Similarly as in the circle, ellipse and hyperbola, to determine the mutual position of line and parabola, solve the system of equations:
$y=k x+n \quad$ and $\quad y^{2}=2 p x$

- If the system has no solution, then the line and the parabola is not cut, that is $p<2 k n$
- If the system has two solutions, then line cut parabola in two points $\quad p>2 k n$
- If the system has one solution, line is tangent, and satisfies the contact condition: $p=2 \mathrm{kn}$

Note;
If we seek an tangent line at a given point $\left(x_{0}, y_{0}\right)$ which belongs to theparabola, we have formula:

$$
y \cdot y_{0}=p\left(x+x_{0}\right)
$$

Example 2.

Find a point on $y^{2}=16 x$ whose tangent line is tilted to an angle of 135 degrees $\left(135^{0}\right)$ to the x-axis

Solution:

Mark that point $\left(x_{0}, y_{0}\right)$. Tangent will be $y \cdot y_{0}=p\left(x+x_{0}\right)$. From parabola, we have:
$2 p=16$
$\mathrm{p}=8$
$y \cdot y_{0}=8\left(x+x_{0}\right)$
$y \cdot y_{0}=8 x+8 x_{0}$
$y=\frac{8}{y_{0}} x+\frac{8 x_{0}}{y_{0}}$
$k=\frac{8}{y_{0}}$
We found line direction, and how:
$k=\operatorname{tg} \alpha$
$k=\operatorname{tg} 135^{\circ}$
$k=-1$

$$
k=\frac{8}{y_{0}}
$$

Then is:

$$
-1=\frac{8}{y_{0}} \rightarrow y_{0}=-8
$$

Substituting this value in the equation of parabola, we have
$y^{2}=16 x$
$(-8)^{2}=16 x$
$16 x=64$
$x=4$
Therefore, the requested point is $(4,-8)$

Example 3.

Write the equation of tangent parabola $y^{2}=12 x$ if it is parallel with line $3 x-y-4=0$

Solution:

How is our line parallel to the given, they have the same k (condition parallels)
$3 x-y-4=0$
$y=3 x-4$
$k=3$

For now, we have $y=3 x+n$, and n will be found by using contact condition: $p=2 k n$
From parabola is $y^{2}=12 x \rightarrow 2 p=12 \rightarrow p=6$

$$
\begin{aligned}
& p=2 k n \\
& 6=2 \cdot 3 n \\
& 6=6 n \\
& n=1
\end{aligned}
$$

Solution is: $\quad y=3 x+1$
Example 4.
Write the equation of the common tangent line for $y^{2}=4 x$ and $x^{2}+y^{2}-2 x-9=0$

Solution:

$$
\begin{aligned}
& x^{2}+y^{2}-2 x-9=0 \\
& x^{2}-2 x+y^{2}-9=0 \\
& \left(x-2 x+1-1+y^{2}-9=0\right. \\
& (x-1)^{2}+y^{2}=10 \rightarrow p=1, q=0, r^{2}=10
\end{aligned}
$$

Search tangent: $y=k x+n$.
It must satisfy contact condition with parabola and with circle.
From parabola we have $y^{2}=4 x$, then $2 \mathrm{p}=4$, so $\mathbf{p}=\mathbf{2}$
$p=2 k n$
$2=2 k n$
$k n=1$

For circle:

$$
\begin{aligned}
& r^{2}\left(k^{2}+1\right)=(k p-q+n)^{2} \\
& 10\left(k^{2}+1\right)=(1 \cdot k+n)^{2} \\
& 10\left(k^{2}+1\right)=(k+n)^{2}
\end{aligned}
$$

We have two equations with two unknowns, solve the system:

$$
10\left(k^{2}+1\right)=(k+n)^{2}
$$

$$
k n=1
$$

$$
n=\frac{1}{k}
$$

$$
10\left(k^{2}+1\right)=\left(k+\frac{1}{k}\right)^{2}
$$

$$
10\left(k^{2}+1\right)=\left(\frac{k^{2}+1}{k}\right)^{2}
$$

$$
10\left(k^{2}+1\right)=\frac{\left(k^{2}+1\right)^{2}}{k^{2}}
$$

$$
10 k^{2}=k^{2}+1
$$

$$
9 k^{2}=1
$$

$$
k^{2}=\frac{1}{9} \rightarrow k_{1}=\frac{1}{3}, k_{2}=-\frac{1}{3}
$$

Let's go back to find n :

$$
\begin{aligned}
& k n=1 \\
& k_{1}=\frac{1}{3} \rightarrow n_{1}=3 \\
& k_{2}=-\frac{1}{3} \rightarrow n_{2}=-3
\end{aligned}
$$

Tangent line equations are:
$t_{1}: y=\frac{1}{3} x+3$
$t_{2}: \quad y=-\frac{1}{3} x-3$

Why do we appear two solutions?
If we draw the problem, we see that it is obvious ..

