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PARABLE 

 

Parabola is the set of points in the plane with attribute that distance of each point from a constant point (focus) is the  

 

same  as  distance from the point of a permanent line  (directrix). 
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The equation is:     
2 2y px=  

  

 

Of course, this parabola is the most studied, but here is some other parabolas: 
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Example 1. 

 

We have parabola 2 4y x= − . Through its point M (-2, -1) set a  chord  that is the point halved . 

 

Solution: 

 

Draw a picture to analyze the problem: 
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Point M in mid-long AB and must be : 
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Points A and B belong to the parabola, and their coordinates can be changed instead x and y in  equation: 
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In this way we get 4 equations with 4 unknowns. We ask for the coordinates of points A and B, but smarter is to  

find the direction of line which passes through AB . 
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Now the equation of line  through a point  M(-2,-1) 

0 0( )

( 1) 2( ( 2))

1 2 4

2 3

y y k x x

y x

y x

y x

− = −

− − = − −

+ = +

= +

 

 



 3 

Line and parabola 

Similarly as in the circle , ellipse and hyperbola, to determine the mutual position of line  and parabola , solve the 

system of equations: 

 

y kx n= +    and    2 2y px=  

 

- If the system has no solution, then the line and the parabola is not cut, that is    2p kn<  

 

- If the system has two solutions, then line cut parabola  in two points      2p kn>  

 

- If the system has one solution, line is tangent, and satisfies the contact condition: 2p kn=  

 

 

Note; 

If we seek an tangent line at a given point 0 0( , )x y  which belongs to theparabola, we have formula: 

 

0 0( )y y p x x⋅ = +  

 

Example  2. 

 

Find a point on 2 16y x=  whose tangent line is tilted to an angle of 135 degrees  ( 0135   )to the x-axis  

 

Solution: 

 

Mark that point 0 0( , )x y . Tangent will be 0 0( )y y p x x⋅ = + . From parabola, we have: 
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We found line  direction, and how: 
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Substituting this value in the equation of parabola  ,we have 
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 Therefore, the requested point is ( 4, -8) 

 

 

Example 3. 

 

 

Write the equation of tangent parabola 2 12y x=  if it is parallel with   line  3x – y– 4 = 0 

 

Solution: 

 

How is our  line  parallel to the given, they have the same k (condition parallels) 

 

 

3 4 0

3 4

3

x y

y x

k

− − =

= −

=

    

 

 

For now, we have  y = 3x + n , and n will be found by using contact condition: 2p kn=  

 

From parabola is  2 12 2 12 6y x p p= → = → =  
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Solution is:     y = 3x + 1 

 

Example  4. 

 

Write the equation of the common tangent line  for 2 4y x=   and   2 2 2 9 0x y x+ − − =  

 

Solution: 
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Search tangent:   y = kx + n .  

 

It must satisfy contact condition with parabola and with circle. 

From parabola we have 2 4y x=   , then  2p = 4 , so  p = 2 
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For circle: 
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We have two equations with two unknowns, solve the system: 
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Let's go back to find n: 
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Tangent line equations are: 
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Why do we appear two solutions? 

 

If we draw the problem, we see that it is obvious .. 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

 


